Arcs and Sectors

$\mathbf{1}^{\text {st }}$ thing - choose and use the correct formula
Arc length is $\frac{\theta}{360^{\circ}} \times \pi \times D$, remember you need the DIAMETER
Area of a sector is $\frac{\theta}{360^{\circ}} \times \pi \times r^{2}$, remember to use SQUARE the RADIUS
$2^{\text {nd }}$ thing - make a fraction using the angle at the centre of the circle $\frac{40}{360}, \frac{170}{360}$ etc $3^{\text {rd }}$ thing - make sure that the formula on your calculator is the same as the formula in your working before your press enter!
Always write your full calculator answer, then round and add units (cm^{2} for area)

Arc length

$$
\begin{aligned}
& =\frac{72}{360} \times \pi \times 10 \\
& =6.283185 \ldots \\
& =6.3 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\frac{72}{360} \times \pi \times 5^{2} \\
& =15.707963 \ldots \\
& =15.7 \mathrm{~cm}^{2}
\end{aligned}
$$

Now try these - find both arc length and sector area
Radius of 7 cm

Solutions

Arc Length 5 cm	Arc Length 23.9 cm	Arc Length 5.3 m
Area $17.5 \mathrm{~cm}^{2}$	Area $136 \mathrm{~cm}^{2}$	Area $13.6 \mathrm{~m}^{2}$
Arc Length 14.9 cm	Arc Length 141.4 cm	Arc Length 11.9 m
Area $111.9 \mathrm{~cm}^{2}$	Area $3817 \mathrm{~cm}^{2}$	Area $113 \mathrm{~m}^{2}$

